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Abstract

The change in the solid-state proton NMR Free Induction Decay signal of a polyethylene sample while heating from 360 to approximately
400 K was investigated. The crystallinity, as determined by model fit, decreases approximately linearly with increasing temperature up to
393 K. At higher temperature, the crystallinity decreases faster with increasing temperature. Within the temperature region investigated,
three different “phases” are identified. The change in the relative distribution of these phases versus temperature is explained quantitatively
by a phase-equilibrium model. Spin–spin relaxation time measurements and second moment calculations are presented, which gives
information about molecular motion within these phases.q 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Use of NMR spectroscopy to derive structural informa-
tion on polymers has received considerable attention during
the last four decades, of which a few publications are cited
in the list of references [1–7]. Also, NMR has been shown
to give useful information on the morphology of semi-crys-
talline polyolefins [8].

Dadayli et al. [9] and Hansen et al. [10] have recently
reported on the crystallinity of polyolefins [polypropylene
and polyethylene (PE)] from solid-state proton NMR Free
Induction Decay (FID) analysis and showed that the derived
crystallinity is in excellent agreement with crystallinity
obtained by density measurements and Differential Scan-
ning Calorimetry (DSC) measurements. In particular, we
showed that the crystallinity obtained from conventional
FT-NMR spectral analysis was underestimated by approxi-
mately 8% (on an absolute scale) for a sample with crystal-
linity of 68% (as determined by NMR FID analysis) [10].
This systematic discrepancy originates from the obligatory
blanking time of the receiver introduced to avoid break-
through of rf-pulses.

Also, pre-melting and softening are processes of signifi-
cant impact on the physical characteristics of polymers [11]
and have been investigated by calorimetric measurements

[12], rheological techniques [11] and NMR measurements
[13,14].

Based on recently published work [10], we found it was
of interest to apply this solid-state proton NMR “FID analy-
sis technique” to characterize a pre-melted PE sample by
monitoring the crystallinity and potential phase changes
within the polymer versus temperature, in situ. Also, mole-
cular motional characteristics of the different phases as well
as the mathematical-physical model(s) used to quantify the
FID will be addressed. Quantification of the distribution of
phases versus temperature will be another subject of interest
in this report.

In short, the main object of this presentation is to empha-
size the potential use of the NMR FID analysis technique to
characterize PEs and other polyolefins.

2. Experimental

2.1. Material

The single PE sample investigated in this work was
received from Borealis AS. The degree of branching was
determined by sampling a carbon NMR spectrum of the PE
sample dissolved in orthodichlorobenzene (ODCB) at
403 K.

The solid PE sample was initially melted at 428 K within
the NMR magnet and then cooled in a flow of nitrogen
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(300 K) down to 368 K at a cooling rate of approximately
20 K/min. The subsequent cooling down to room tempera-
ture took approximately 7 min, corresponding to a cooling
rate of approximately 10 K/min. The sample was then
temperature equilibrated for 30 min at room temperature.

The sample was heated to the actual temperature and the
FID signal acquired in the temperature range 360–400 K.
Before acquiring any FID, the sample was allowed to
temperature equilibrate for approximately 10 min.

3. NMR

All NMR measurements were performed on a Bruker
DMX 200 AVANCE instrument operating at 200 MHz
proton resonance frequency. A high-power1H NMR probe
capable of producing 908 radio frequency (rf) pulses of
approximately 1.5ms was used. The FID was sampled
every 0.2ms. To avoid pulse breakthrough, a receiver blank-
ing time (“dead time”) of 2ms was applied. Four scans were
acquired in each experiment with a repetition time of 20 s
between each scan. This repetition time is much longer than
five times the longer spin–lattice relaxation timeT1 (,1.5 s)
of the methylene protons and ensures quantitative sampling
of the FID. The actual phase parameters were adjusted
manually to give a pure absorption spectrum in order to
ensure that only the real part of the FID is sampled [15].

Each FID was sampled from 2ms up to 4.4 ms, corre-
sponding to approximately 22 K of data points. Before
transforming the data to a PC for post processing, the data
matrix was reduced in size by selecting all sampled data
points from 2 to 42ms (200 points), and each 44 data points
from 42ms up (500 data points). This particular reduction
and selection of data points, from 22 to 0.7 K, was favored
by visual inspection of all sampled FIDs, simultaneously.
The reason for performing such a data reduction or filtering,
was to speed up the subsequent calculation (on a PC) when
using the program “solver” in Microsoft Excel.

The temperature within the probe was calibrated by use of
a NMR thermometer of ethylene glycol and controlled by a
Bruker B-VT unit, manufactured by Oxford Instruments
Ltd. The actual temperature was estimated to be stable
and accurate to about̂1 K.

For the high-resolution, liquid state NMR experiment, the
PE sample was dissolved in ODCB in a 5 mm outer
diameter NMR tube (approximately 12.5 wt.% of polymer
in solution) and saturated with nitrogen gas before being
sealed. The polymer was dissolved at 423 K for 30 min
before a proton decoupled13C spectrum was acquired at
403 K on a Varian VXR 300 NMR spectrometer, operating
at 75 MHz carbon resonance frequency. Ap/2-pulse was
applied with an acquisition time of 1s. The pulse repetition
time was fixed at 60 s and the sweep width set to 18 kHz
using 64 K data points. The intensity (area) of each peak
was determined by mathematical deconvolution, i.e. fitting
the resonance peak to a Lorenzian function by a non-linear

least squares procedure, which gives an optimum value of
peak position (chemical shift) and peak intensity (area).

4. Theoretical outline

4.1. Crystalline phase

From a NMR point of view, PE represents a rather
“simple” polymer system in which the two proton nuclei
of each methylene group constitute a strong dipole–dipole
coupled two-spin system. As a result of the weaker dipole–
dipole coupling between protons on different methylene
groups, the absorption line shape function of the protons
in PE can be considered, to a good approximation, to arise
from a Gaussian broadened two-spin interaction, where the
broadening is being caused by other neighbors. Pake [16]
derived an analytical expression for such an absorption
spectrum of coupled spin 1/2 nuclei. However, owing to
the inherent NMR dilemma related to rf-pulse breakthrough
[17], the theoretical Pake function cannot be fitted directly
to the frequency spectrum. Rather, we need to obtain the
inverse Fourier Transform of the Pake expression, which
will represent the observed signal intensity in the time
domain. Look and coworkers [18] presented an analytical
solution to this enigma, which has been used recently by
Hansen et al. [10]
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where P(t) defines the normalized time dependent FID
signal and C(x) and S(x) are the so-called Fresnel functions
which are defined as simple integral equations [19]. The
parametera is related to the distance,RH–H, between the
two nearest neighbour protons of the methylene group
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whereg is the nuclear gyromagnetic ratio and" is Planck’s
constant, andb represents the width of the Gaussian broad-
ening function, which takes account of dipole–dipole inter-
actions between protons on different methylene groups. In
order to apply Eq. (1) as a fitting function, a more tractable
form of the Fresnel functions is needed. The following
approximations have been used [19]:
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where

f �x� � 1 1 0:926x
2 1 1:792x 1 3:104x2 1 1�x�; �1e�

g�x� � 1
2 1 4:142x 1 3:492x2 1 6:670x3 1 1�x�: �1f�

The absolute error,1(x), in these approximations is less
than 2× 1023.

Dadayli et al. [9] have used an approximate form of
Eq. (1), which is defined by a Gaussian-broadened sinc

function
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Eq. (2) was first suggested and used by Abragam as a
phenomenological expression of the [19] FID signal of
CaF2, and is—in this work—simply denoted an “Abraga-
mian” [20]. It has been found to be a good representation of
the FID from other regular, crystalline lattices [9]. Both of
these models, Eqs. (1) and (2), will be applied in the present
work when discussing the crystallinity of PE.

4.2. Amorphous phase

In contrast to the crystalline phase of PE, the amorphous
phase is evidenced by an increased fluctuation in the mole-
cular mobility, which is expected to modify the shape of the
NMR spectrum. Brereton et al. [21,22] have derived an
exact, theoretical expression for the FID of a dynamic
scale invariant polymer chain governed by a single relaxa-
tion time. This type of function was shown to give a satis-
factory representation of the FID of amorphous PE above its
glass transition temperature,Tg. Also, this same function
was shown to give a reasonable reproduction of the FID
from PE melts over a range of temperatures, and was
successfully applied by us in a recent investigation of PE
at room temperature [10]. The analytical form of the
“Brereton” function is rather complex and will not be
discussed further in this work.

Dadayli et al. [9] have pointed out that the rather complex
Brereton function can be well approximated by the sum of a
Weibullian function,W(t), and one or two exponential func-
tions

W�t� � exp 2 t=T2c

ÿ �n� �
: �3�

The normalized Weibullian function ranges between a
pure Lorentzian (n � 1) and a pure Gaussian (n � 2). It
should be emphasized, however, that there is no direct theo-
retical justification for the approximation of a Brereton
function to a sum of a Weibullian and one or two exponen-
tial functions. This approximation is basically an empirical
one.

5. Results and discussion

5.1. Structural characterization of the PE sample

Fig. 1 shows a proton decoupled13C NMR spectrum of a
12.5 wt.% of the PE sample dissolved in ODCB at 403 K
with proton decoupling applied between successive 908 r.f.-
pulses. The type of branch (Fig. 1) is identified according to
a recent work by Hansen et al. [23] and reveals only butyl
branches (4–5 per 1000 main chain carbons).
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Fig. 1. 13C-{ 1H} n.m.r. spectrum of a 12.5 wt.% PE sample dissolved in
ODCB. Spectrum acquired at 403 K. Main peak is set atd � 29.980 ppm.



5.2. FID analysis of the PE sample

For times larger than 2 ms, all FIDs are well fitted by a
single exponential function (Eq. (3), withn� 1), and will be
discussed in the later section. This fitted function was
subtracted from the observed FID, resulting in a new or
“corrected” FID, as illustrated in Fig. 2(A) (T � 386 K).
Note the significant distortion of the FID at the start of the
acquisition, due to rf-pulse breakthrough. These initial data
points (t # 4 ms) were excluded from the model fit. In a
recent publication we showed that at room temperature a
sum of a single Pake function, Eq. (1a), and a Brereton
function could be well fitted to the observed FID of different
PE samples [10]. In this work, the sum of a Brereton
function and a Pake function was found to give a satisfac-
tory representation of the FID only at low temperature (T�
360–380 K). When increasing the temperature (,380 K),
this model resulted in a significantly poorer fit. Thus, a
model composed of a sum of one Pake function and two
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Fig. 2. (A) Corrected FID signal of a PE sample atT� 386 K. Solid curve
represents model fit to a Pake–Weibullian-Exponential function (the PWE-
model); (B) illustration of the different contribution to the FID, whereP, W
andE represent the Pake function, the Weibullian function and the single
Exponential function, respectively; (C) residual between observed and
calculated (PWE-model) FIDs.

Fig. 3. Observed FIDs during heating of a pre-melted PE sample from 360
to 397 K. From top to bottomT � 360, 370, 372, 374, 376, 378, 380 382,
384, 386, 388, 390–397 K. See text for further details.

Fig. 4. Frequency spectra obtained by Fourier Transformation of model
fitted FIDs of sample PE at (A)T � 360 K; (B) T � 378 K; and (C)T �
396 K, respectively.



Weibullian functions, Eq. (3), resulted in a much better fit to
the observed FID within the whole temperature range inves-
tigated. This model fit is shown by the solid curve in
Fig. 2(A). Fig. 2(B) illustrates the separate contributions
from each of these functions, whereP represents the Pake
function (Eq. (1a)),W represents the Weibullian (Eq. (3)),
andE represents a single exponential function (Eq. (3) with
n� 1). The residual, i.e. the difference between the
observed and the model fitted FIDs, is presented in Fig. 2(C)
and suggests that the error is small and randomly distributed.
This observation was found to be of genuine nature at all
temperatures investigated, except at the two higher temper-
aures, in which the envelope of the residuals exposed a
small, low-frequency oscillation. On this background, the

Pake–Weibullian Exponential–Exponential (“PWEE”)
model was used throughout in this work. If replacing the
Pake function by an Abragamian, Eq. (2), a slightly modi-
fied model (“AWEE”) is obtained, which has been reported
to give excellent fit to the FID of solid polypropylene [9].
However, the Abragamian is mainly a phenomenological
expression, which yields little or no physical insight. This
is in contrast to a Pake function. The replacement of a Pake
function with an Abragamian results in a simpler and faster
numerical approach, which gives a slightly poorer fit than
the PWEE-model. We have implemented this latter model
(AWEE) in the present work, mainly for comparative
purposes.

The FIDs acquired at different temperatures are shown in
Fig. 3 and demonstrate the systematic change in the shape of
the FID versus temperature. This effect is better illustrated
in Fig. 4, which shows the Fourier-Transformed (FT)
spectra of the fitted FIDs atT� 360, 378 and 396 K, respec-
tively. The corresponding frequency spectra of the crystal-
line phase (Pake function) are plotted in Fig. 5, and
demonstrate clearly the significant reduction in signal inten-
sity of this phase with increasing temperature. The shape of
these spectra also changes with temperature and will be
discussed in the next section.

5.3. Crystalline phase

The “FID analysis approach” applied in this work makes
it possible to obtain detailed information regarding the
different phases of the PE sample, in particular the crystal-
line phase. Eq. (1) shows that the line shape of the Pake
function in the frequency domain depends on only two para-
meters,a andb . These parameters are plotted in Fig. 6(A)
versus the inverse absolute temperature and show thata is
nearly constant. The parameterb increases with decreasing
temperature. Likewise, thea /b ratio increases with
decreasing temperature, as shown in Fig. 6(B). The solid/
dotted curves in Fig. 6 represent linear least squares fit to the
observed data. According to the work of Pedersen [24], the
doublet structure is less pronounced, in general, with
increasing b /a-ratio from approximately 0.4. For
b=a . 0:70, the spectrum is without any fine structure as
suggested by the frequency spectrum in Fig. 5(A). By defin-
ing the crystallinity of the sample as the signal intensity of
the Pake function divided by the total signal intensity, the
crystallinity versus temperature can be calculated. The
results are shown in Fig. 7, suggesting the crystallinity to
decrease approximately linearly with increasing tempera-
ture up to 392 K. Above this temperature the crystallinity
drops markedly with increasing temperature. We tentatively
interpret this abrupt change in crystallinity vs. temperature
as the onset of melting.

It is worth noting that the experimentally determined
proton–proton distance, as calculated from the observed
a -value (1.15× 105 s21), is equal to (1.69̂ 0.05) Å.
This result is in excellent agreement with the value of
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Fig. 5. Calculated frequency spectra of the crystalline phase of sample PE at
the same temperatures as shown in Fig. 4. I.e., at (A)T� 360 K; (B) T�
378 K; and (C)T � 396 K. The spectra were obtained by Fourier Trans-
formation of the Pake function contribution to the FIDs in Fig. 3.

Fig. 6. (A) Pake parameters (a andb Eq. (1a)) versus temperature. These
parameters were obtained by fitting a PWEE-model to the observed FIDs,
as discussed in the text; (B)b /a-ratio versus temperature as obtained from
the data in Fig. 6(A). The solid and dotted curves represent linear least
square fits to the observed data.



1.7 Å, as determined by X-ray measurements, and is the
main reason for adopting the Pake function approach.
However, one point of concern, is that the calculated
distance 2a between the two symmetric “peaks” of the
Pake function (2a � 2.3 × 105 s21 ; 37 kHz) is less than
the width estimated from the frequency spectra of PE
(<50 kHz) in reference [25]. Keeping in mind the uncer-
tainty of 5–10% in the deriveda -value, the actual width of
the Pake function in this work may be as high as 42 kHz.
However, the smaller line width determined from the simple
Pake model approach may originate from the exclusion of
asymmetry broadening effects. The nature of this assymme-
try can often be interpreted in terms of the relative angular
position of nearby interacting pairs of protons in the crystal
chain [26]. Thus, the simple Pake function is not an exact
expression for PE, but must be treated as a reasonable
approximation.

If replacing the Pake function by an Abragamian in the
model fit, no significant difference in crystallinity can be
inferred (Fig. 7). The solid curve represents model calcula-
tion and will be discussed in a later section. These results
give support for the compatibility and consistency between
the two models (PWEE and AWEE). The two parameters,
v0 andT2* , which uniquely define the Abragamian (Eq. (2)),
are plotted versus temperature in Fig. 8. They will be used to

derive the second moment,M2, as described in the next
section.

We can expand the Pake function and the Abragamian in
Taylor series of time (t)
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Here M2 is the second moment,M4 is the fourth moment,
etc. The second moment versus inverse temperature is
shown in Fig. 9 for both models (the “PWEE-model” and
the “AWEE-model”). The dotted/solid curves represent
model fits and will be commented on in a later section. A
small, but significant difference inM2 between the two
models can be inferred. However, both second moments
show an approximate linear decrease with increasing
temperature until the onset of melting, at which temperature
the second moment falls off dramatically. In the discussion
that follows we will use the data obtained from the Pake
function analysis (PWEE-model) due to its improved physi-
cal relevance and better theoretical fundament, as compared
to the Abragamian. From the data presented in Fig. 8, the
second moment of the Abragamian is basically determined
by the frequency factor,v . The spin–spin relaxation rate,
1/T2, shows only a minor influence on the second moment.

According to an approach discussed by English et al. on
spatial averaging [27], the molecular motion is reflected by
the part of the second moment that is modulated by the
motion on the time scale of the measurement in question.
If the symmetry of the motion is such that the molecular
interaction vector,r, samples orientations (f ) which have
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Fig. 7. Crystallinity versus temperature as determined by the PWEE-model
fit (W) and the AWEE-model fit (X) to the observed FIDs in Fig. 3. The
solid curve represents a model fit and is discussed in the text.

Fig. 8. Frequency parameters,v and 1/T2, of the Abragamian function, Eq.
(2), as obtained by model fit (AWEE-model) to the observed FID in Fig. 3.

Fig. 9. Second moment (M2) of the crystalline part of the FID versus inverse
absolute temperature. The second moment is calculated from Eq. (4), using
two different models, the PWEE-model (W) and the AWEE-model (X). The
dashed curves represent model fits to Eq. (7). See text for further details.



an axially symmetric distribution about a direction,d,
then

S2
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where Sfdefines the order parameter, i.e. the ratio
between the observed second moment (M2) and the static
second moment�M0

2 � 2:28× 1010 s22�10. As the orienta-
tional angle is not expected to be the same for all parts
of the polymer chain, we will assume that it can be
described by a distribution of angles. Assuming the
distribution to be random, a Gaussian function with a
standard deviation,f0, may be used, giving [27]
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Fig. 10 showsSf andf0 versus temperature and are in
excellent agreement with corresponding analysis reported
on semi-crystalline PE terphtalate [27]. Also, the “activation
energy” was found to be of the same order of magnitude,
9 kJ/mol. Using the Abragamian second moment, resulted
in a somewhat smaller activation energy of 5 kJ/mol.

Typically,f0 increases linearly with increasing temperature
up to T � 392 K, above which temperaturef0 increases
substantially, and is tentatively explained by the onset of
melting. Thef0 versus temperature data presented in Fig.
10(B) are well fitted by straight lines for temperatures
T , 392 K. These empirical fits are used to recalculate
the order parameterSf from Eq. (6). The results are
shown by the dashed curves in Fig. 10(A).

Another observation, which needs some attention, is the
levelling off of the second moment within a small tempera-
ture region of approximately 5 K and close to the onset of
melting (PWEE-model, Fig. 9). A similar observation has
been reported by Olf et al. [28,29] back in 1970 on an
investigation of oriented mats of PE single crystals. The
second moment variation with temperature of a powder
average PE sample, as calculated from such oriented mat
samples [28], is in agreement with the corresponding second
moment of the crystalline phase observed in this work. A
similar leveling off of the second moment derived from
application of the AWEE-model (Fig. 9), cannot be recog-
nized as easily. These results give support to the conclusion
that the Pake function gives a physically reliable description
of the crystalline phase within semi-crystalline PE samples.
This statement is also sustained by previous NMR measure-
ments [10].

To decide what type of motion that dominates thea -
process within the crystalline phase, we recognize from
the temperature variation of the second moment, that the
intra-molecular contribution (a in Eq. (1)) is nearly constant
and temperature independent. Only the inter-molecular
contribution (b in Eq. (1)) to the second moment varies
significantly with temperature, suggesting that the motional
process is basically an inter-molecular one (Fig. 6(A)). This
implies that the inter-nuclear vector, joining two protons on
the same methylene unit, must have the same direction with
respect to the external magnetic field during the motional
process. Also, the magnitude of this same vector must
remain practically constant in time. These constraints
exclude the: (a) “flip-flop” motion, which consists of a rota-
tional jump of the molecule around its axis by 1808, and a
simultaneous translation along this axis by one CH2-group,
and (b) the incoherent rotational oscillations of the chains
about their equilibrium positions in the crystal lattice
[28,29]. We are then left with a molecular motion that
may be described by a parallel displacement of the planar
zig-zag segments of PE, perpendicular to their axes [28,29].
The overall change in the second moment from 325 to
392 K (a -process) is approximately 0.57× 1010 s22, corre-
sponding to approximately eight gauss [2]. This is of the
same order of magnitude as observed by Olf et al. [28,29] of
approximately seven gauss [2].

The question remains on how to obtain information
regarding the correlation time of the aforementioned mole-
cular motion. We have used the most commonly applied
method of Bloembergen, Purcell and Pound (BPP) [30]. In
its most simple form, the motional correlation timet is
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Fig. 10. (A) order parameter,Sb (Eq. (5)), and (B) standard deviation of a
Gaussian distribution of small-angle vibrations (b0; Eq. (6)) of the crystal-
line phase versus inverse absolute temperature (1000/T), as calculated from
the two different models, the PWEE-model (W) and the AWEE-model (X).
The dashed curves in (B) were determined by straight-line fits to the
observed data. The dashed curves in (A) were calculated from Eq. (6) by
implementing the linear relation betweenb0 versus 1000/T in (B). See text
for further details.



related to the second moment by
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second moment andl is a constant of the order of unity. Its
value will depend on the shape of the resonance peak. We
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, in accordance with the work of
Kubo and Tomita and others [31–34]. Assuming the
motional process to be thermally activated, in which the
correlation time,t , can be described by an Arrhenius

equation
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where (DE) is the activation energy,T the absolute tempera-
ture, and P is the pre-exponential factor (the attempt
frequency). These parameters can be determined by insert-
ing Eq. (8) into (7) and fitting this combined equation to the
observed second moment (M2) versus inverse absolute
temperature (1000/T , 2.54) by a non-linear least squares
technique. The results are shown by the dashed curves in
Fig. 9, withP� 9.34× 106 s21 andDE� 13.5 kJ/mol. The
model fit predicts a correlation time of 17ms at the onset of
thea -process (T� 323 K) and a correlation time of 6.8ms
at the end of thea-process (or the onset of melting atT �
393 K), respectively. The straight, dashed line in Fig. 9 for
1000/T , 2.54 is determined by a simple linear fit and has
no physical significance. From dynamic mechanical experi-
ments, this activation energy is more like 120 kJ/mol. The
reason for this significant discrepancy is not understood, but
suggests that NMR and dynamic mechanical experiments
probe different molecular motions.

It is worth mentioning that the limiting, and minimum
observable spin–spin relaxation time can be approximated
by

����
M0

2

p
, which equals approximately 7ms. Correlation

times much larger than 7ms can thus not be resolved or
unravelled by spin–spin relaxation time measurements. In
this case one should resort to spin–lattice relaxation time
measurements. This particular method to probe molecular
motion may, however, be complicated by spin diffusion
effects [35,36], a topic which is outside the scope of this
work.

5.4. Phase-equilibrium

A total of four separable FID-components can be
extracted from model fitting to the observed FID. Three of
these components, ascribed to the non-crystalline phases,
are represented by capital letters: I, A1 and A2. The signal
intensity versus temperature of the four FID-components are
depicted in Fig. 11 and show a linear decrease with increas-
ing temperature of both the crystalline signal intensity (C)
and the I-signal intensity, up to approximately 393 K. At
higher temperatures, the slope of the same two signal inten-
sities versus temperature becomes much steeper. As already
mentioned, this change in slope with temperature is tenta-
tively identified as the onset of melting.

As shown by Brereton et al. [22] the FID of the amor-
phous phase (even in the melt) cannot be characterized by a
singleT2 relaxation time, but rather by a multiple exponen-
tial decay. On this grounds, we have assigned the two signal
components A1 and A2 to the amorphous phase. The signal
intensity of the amorphous phase (A) is thus defined as the
sum of signal intensities of the two components A1 and A2.
As the NMR signal intensity (S) is directly proportional to
the amount of polymer (NS), a plot of the signal intensity
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Fig. 11. Observed signal intensities of the crystalline C (V), intermediate
(S) and amorphous A-phase of PE as a function of temperature (T). The
dotted curves represent model calculations (Eq. (10)). See text for further
details.

Fig. 12. Observed signal intensity ratios (Ri) versus inverse absolute
temperature (1000/T) for (A) R1 � NI =NC and (B)R2 � NA =NI . Nx repre-
sents the signal intensity of phaseX(� C, I, A). The dotted and solid curves
represent model fits to Eq. (9). See text for further details.



ratios (Ri) against the inverse temperature (1/T) are shown in
Fig. 12 for R1 � NI =NC, R2 � NA =NI . Within the whole
temperature region investigated, these ratios can be well
approximated by the following type of function:

Ri � ai1 exp 2
DGi1

RT

� �
1 ai2 exp 2

DGi2

RT

� �
; �9a�

whereaij andDGij (for i � 1,2) are constants. The observed
and fittedRi-values versus temperature are shown in Fig. 12,
and reveal an abrupt change at a temperature corresponding
approximately to the onset of melting. Within thea -process
regime (T . 393 K), the observed ratios can be well
approximated by the second term in Eq. (9a), i.e.

Ri � ai2 exp 2
DGi2

RT

� �
: �9b�

The results are indicated by the dotted curves in Fig. 12.
The energy parametersDGi2, within the a -regime, were
found to beDG12 � (15.6^ 1.8) kJ/mol,DG22 � (40.9^

2.1) kJ/mol.
The aforementioned results can be quantitatively rationa-

lized, according to the following phase-equilibrium

reactions:

CX
K1

I X
K2

A; �10�
where the “equilibrium” constantsKi in Eq. (10) can be
identified with theRi-ratios discussed above. As matter is
conserved, the total contribution of polymer from the
respective phases, C, I, A must be constant, i.e.

NC 1 NI 1 NA � constant: �11�
If the constant in Eq. (11) is set equal to 100, the amount

of polymer contributing to each phase can be calculated
from the phase-equilibrium reaction, Eq. (10). The results
are depicted as dashed curves in Fig. 11, and are in quanti-
tative agreement with observation. The solid curve in Fig. 7
is calculated from this same phase-equilibrium model, Eq.
(10), We tentatively assign the four different phases to the
crystalline phase (C), the intermediate phase (I), and the
amorphous phase (A), respectively. This assignment of
phases will be discussed in more details in the next section,
when trying to pin down the molecular motional character-
istics of the polymer in question.

5.5. Non-crystalline phases

The separate FID components of the three phases, I, A1

and A2 can be described by single exponential functions in
the temperature rangeT � 360–392 K. In the narrow
temperature regionT � 392–397 K, the FID of the A2
component changes continuously from a pure Exponential
to a pure Gaussian shape, indicating that this phase may be
characterized by a distribution of spin–spin relaxation times
rather than a single relaxation time. The other two FID-
components decay exponentially in the whole temperature
range investigated. The exact reason for the change in shape
of the FID-component A2 is not well understood, but may
originate from spin-diffusion effects between phases
[35,36]. This predicament is, however, outside the scope
of this work, and needs further investigation.

The spin–spin relaxation times versus temperature of the
three components I, A1 and A2 are plotted in Fig. 13(A) and
are distinctly different. The relaxation time of the I-compo-
nent is practically independent of temperature and equals
T2� (23.6^ 2.9ms). This is the same relaxation time (T2�
(21.4^ 0.95)ms) as found in the crystalline phase (C) when
assuming the crystalline FID to be described by an Abraga-
mian function (AWEE-model). It needs to be emphasized,
however, that the Abragamian function has little or no
physical relevance, making this derivedT2 relaxation time
somewhat dubious. At least, theT2 obtained by this model fit
is somewhat ambiguous.

However, the shape of the crystalline FID, whether it is
defined by an Abragamian function (AWEE-model) or a
Pake function (PWEE-model), is rather different from an
exponential FID (I-component) and are therefore not
immediately comparable. This basic difference in FID
shape between the C-component and the I-component,
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Fig. 13. (A) spin–spin relaxation time (T2) versus inverse absolute tempera-
ture of the intermediate phase (I) and the amorphous phase-A (A1 and A2-
components) as derived from a PWEE-model fit to the observed FIDs. The
T2 of phase I is determined from the AWEE-model fit. The solid curves of
components A1 and A2 are calculated from Eq. (12) by applying the results
obtained in Fig. 13(A); (B) correlation time,t , versus inverse absolute
temperature of components A1 and A2 (amorphous phase) as derived
from Eq. (12). The solid curves are obtained by model fits to Eqs. (8)
and (13).



suggests that these components (I and C) must be of differ-
ent nature.

The next question concerns how to extract information
regarding the molecular motion from theT2 data in Fig.
13(A). One approach is to apply Eq. (12) [31–34], which
represents a modified version of Eq. (7).

t

T2
� l tan

p

2
1=T2

2

M0
2

" #
: �12�

This equation identifies the molecular motion by a
correlation timet . In particular, this equation predicts
a limiting value of the spin–spin relaxation time equal
to

����
M0

2

p
when the correlation time approaches infinity.

Recalling that the spin–spin relaxation time of the I-
component (Fig. 13(A)) is approximately independent
of temperature may suggest that the molecular motion
is located within the long correlation time regime. This
makes it difficult if not impossible to derive reliable
molecular motional information (correlation time) from
spin–spin relaxation time measurements.

One way to overcome this problem is to perform spin–
lattice relaxation time measurements. Although this
approach is complicated by spin-diffusion effects, it can
be solved [35,36].

Fig. 13(B) shows the correlation time versus temperature
of the A1 and A2-components of the amorphous phase (A) as
calculated from Eq. (12). As can be inferred from this figure,
the correlation time cannot be assigned to a simple Arrhe-
nius behavior as defined by Eq. (8).

To further rationalize this behavior we may introduce a
distribution of correlation times. However, the simplest
dynamical model to be invoked is a “parallel-t ” model
[37,38], which takes the form

1
t
� 1

tA
1

1
tB

: �13�

The individual correlation timestA andtB are assumed to
be independent, thermally activated, and thus described by
Eq. (8).

The solid curves in Fig. 13(B) represent linear least
squares fits of Eq. (13) (combined with Eq. (8)) to the
observed correlation time data. Although the activation
energy of the “A-process” could not be reliably estimated,
it is shown to be rather small (t0 kJ/mol) for both phases.
However, the activation energy of the “B-process” is
significantly larger and approximately 160 kJ/mole for
both the amorphous components. The data reveal a faster
molecular motion of the “A2-component” compared to the
“A 1-component” at all temperatures. These results support
the non-homogenous molecular motional characteristics of
the amorphous phase as suggested earlier by Brereton
[21,23]. For comparison, the correlation time characterizing
the molecular motion within the crystalline phase, as calcu-
lated from Eq. (7), is plotted on the same figure.

The molecular motional characteristics illustrated in Fig.

13(B) were used to identify the three phases within the
polymer sample, i.e. C (crystalline phase), I (intermediate
phase) and A (amorphous phase).

6. Conclusion

The observed FID of a pre-melted PE sample is shown to
be decomposed into four separate time signals, at all
temperatures investigated (360–397 K). The four time
signals are derived by fitting two different models, the
“Pake–Weibullian Exponential–Exponential (PWEE)
model” and the “Abragamian–Weibullian-Exponential–
Exponential (AWEE) model”—to the observed FID.

Analysis of the derived spin–spin relaxation times and/or
second moments makes it possible to extract motional char-
acteristics, which in turn enables the different signals to be
assigned to a crystalline phase (C), an intermediate phase (I)
and an amorphous phase (A; composed of two components
A1 and A2). The relative variation in intensity versus
temperature of the three phases can be rationalized accord-
ing to a phase-equilibrium model: CY I Y A.

Both models (PWEE and AWEE) predict—within
experimental error—the same temperature variation of the
different phases. However, the two models result in small
but significant differences in the derived crystalline phase
second moments. As the Abragamian function in the
AWEE-model lacks physical significance, we strongly
believe that the Pake function in the PWEE-model gives a
better description of the crystalline phase of the PE sample.
Also, the latter model gives, generally, a somewhat better fit
to the observed FID. The PWEE-model suggests that mole-
cular motion within the crystalline phase may be described
by a parallel displacement of the planar zig-zag segments,
perpendicular to their axes.
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